Компания Seeq расширяет поддержку машинного обучения

0
213

Корпорация Seeq, один из лидеров в продвинутом программном обеспечении для аналитики данных производства и промышленного Интернета вещей (IIoT), объявила, что расширяет интеграцию алгоритмов машинного обучения в приложения Seeq. В результате компании смогут задействовать инвестиции в анализ данных и обеспечить работникам первой линии легкий доступ к алгоритмам машинного обучения с открытым исходным кодом и от сторонних поставщиков.

Среди заказчиков Seeq компании, работающие в нефтегазовой отрасли, фармацевтике, химической промышленности, энергетике, горнодобывающем деле, производстве пищевых продуктов и других сферах. Компании Insight Ventures, Saudi Aramco Energy Ventures, Altira Group, Chevron Technology Ventures, Cisco Investments и другие инвесторы уже вложили в Seeq более $100 млн.

Стратегия Seeq по внедрению инноваций машинного обучения обеспечивает конечным пользователям доступ к алгоритмам из нескольких источников без привязки к одному определенному поставщику или платформе. В результате гарантируется разнообразие типов алгоритмов, доступных компаниям, включая: – алгоритмы с открытым исходным кодом и из различных общедоступных ресурсов. Например, на этой неделе Seeq опубликует два своих дополнения на GitHub, в том числе алгоритмы и рабочие циклы для корреляционного и кластерного анализа, которые пользователи могут изменять и улучшать под свои нужды; – алгоритмы, созданные пользователями в Seeq Data Lab или на аналитических платформах, использующих машинное обучение, например Microsoft Azure Machine Learning, Amazon SageMaker, Anaconda и других, в ходе инициатив по интеллектуальному анализу данных или цифровой трансформации; – алгоритмы сторонних поставщиков, предоставленные разработчиками программного обеспечения, партнерами и научными учреждениями. Развивается рынок алгоритмов для промышленности и вертикального рынка — уже представлены решения AWS Lookout for Equipment, Microsoft Azure AutoML, BKO Services Pump Prediction и алгоритмы с открытым исходным кодом от Университета Бригама Янга.

ЧИТАТЬ ТАКЖЕ:  «Т1 интеграция» стала поставщиком комплексных сервисных услуг для Tele2

Инициатива Seeq решает критическую сложность «последней мили» масштабирования и развертывания алгоритмов на производственном предприятии, предоставляя работникам 1/3 инновационные решения по аналитике данных в удобных для использования приложениях: Seeq Workbench для расширенной аналитики, Organizer для публикации отчетов и Seeq Data Lab для доступа к библиотекам Python в любое время.

Перечисленные решения дополняют способы, которыми Seeq поддерживает фундаментальные элементы успеха машинным обучением. Компания обеспечивает доступ ко всем источникам производственных данных — архивным, контекстным и от производственных приложений — для очистки и моделирования данных, поддержки совместной работы сотрудников и сбора знаний, быстрых прогонов и обеспечения рабочих процессов с непрерывным совершенствованием на основе производительности.

Что сегодня понимают под TestOps Интеграция

Компания Seeq расширяет поддержку машинного обучения

«Инновационные решения для аналитики данных на производстве потенциально могут поднять на новый уровень экологичность, производительность и готовность предприятия, — говорит Кевин Праути (Kevin Prouty), вице-президент IDC Corporation по промышленности. — Но чтобы воспользоваться этой возможностью, компаниям необходимо предоставить инновации в аналитике данных инженерам первой линии вместе с контекстом предприятия, чтобы принимаемые решения основывались на отчетах от новых алгоритмов».

«Seeq обеспечивает связь между командами по аналитике данных и их алгоритмами и работниками первой полосы на сотнях предприятий по всему миру, — говорит Брайан Парсоннет (Brian Parsonnet), главный технический директор корпорации Seeq. — Теперь развертывание алгоритма максимально упрощено — достаточно зарегистрировать его в Seeq и определить, какие сотрудники обладают доступом к нему в своих приложениях Seeq».